🎐 Soal Un Turunan Dan Pembahasan
PembahasanSoal Mencari Turunan (Differensial) | part 1 1. Diketahui , nilai dari f' (5) adalah a. 6 b. 10 c. 14 d. 17 e. 20 PEMBAHASAN: f' (x) = 2x + 4 f' (5) = 2 (5) + 4 = 14 JAWABAN: C 2. Turunan pertama dari adalah PEMBAHASAN: JAWABAN: D 3. Diketahui dan f' adalah turunan pertama dari f. Nilai dari f' (1) = a. 20 b. 21 c. 23 d. 23
hRXJb. SOAL TURUNAN MATEMATIKA DAN PEMBAHASAN . Soal dan Pembahasan Fungsi Turunan ini diambil dari berbagai sumber, mulai dari soal un matematika, soal sbmptn matematika, soal uas matematika yang sengaja disajikan dalam bentuk file pdf, sehingga adik-adik bisa dapat lebih mudah mempelajarinya. Semoga soal ini bermanfaat bagi anda. Diketahui fx = . Nilai f4 = … A. 1/3 B. 3/7 C. 3/5 D. 1 E. 4 fx = f'x = misal ux = 2x + 4 u'x = 2 vx = 1 + v'x = 1/2 x-1/2 f'x = f'4 = = = = = = Luas sebuah kotak tanpa tutup yang alasnya persegi adalah 432 cm2. Agar volume kotak tersebut mencapai maksimum, maka panjang rusuk persegi adalah … cm. A. 6 B. 8 C. 10 D. 12 E. 16 misal kita anggap tinggi kotak adalah t dan panjang sisi alas adalah s. Luas kotak tanpa tutup = Luas alas persegi + 4 x luas sisi 432 = s2 + 432 = s2 + 4ts Karena yang diminta dalam soal adalah panjang sisi persegi, maka kita buat persamaan dalam variable s. 432 – s2 = 4ts 108/s – s/4 = t Volume = vx = s2t = s2108/s – s/4 = 108s – s3/4 Agar volume kotak maksimum maka v'x = 0 108 – 3s2/4 = 0 108 = 3s2/4 144 = s2 12 = s Grafik fungsi fx = x3 + ax2 + bx + c hanya turun pada interval –1 < x < 5. Nilai a + b = … A. – 21 B. – 9 C. 9 D. 21 E. 24 f'x < 0 3x2 + 2ax + b < 0 Karena turun pada interval –1 < x < 5, itu artinya HP dari f'x adalah x1 = -1 atau x2 = 5. Jadi f'x = x + 1x – 5 = x2 – 4x – 5 3x2 + 2ax + b = 3x2 – 4x – 5 3x2 + 2ax + b = 3x2 – 12x – 15 2a = -12 a = -6 b = -15 a + b = -6 + -15 = -21 4. Untuk Mendapatkan Soal Selanjutnya Silahkan Klik Link Download di Bawah ini !
Pembahasan mengenai turunan perlu untuk dipelajari. Dengan menggunakan konsep limit yang telah kalian pelajari, kalian akan dengan mudah mempelajari materi turunan merupakan salah satu materi lanjutan dari limit ingatkah kalian dengan materi limit? Konsep mengenai limit akan kita gunakan sebagai dasar dalam mempelajari materi saja, kita mulai dengan definisi turunan. Definisi TurunanTurunan merupakan suatu perhitungan terhadap perubahan nilai fungsi karena perubahan nilai input variabel.Turunan dapat disebut juga sebagai diferensial dan proses dalam menentukan turunan suatu fungsi disebut sebagai konsep limit yang sudah dipelajari, turunan dapat didefinisikan sebagaiturunan tersebut didefinisikan sebagai limit dari perubahan rata-rata dari nilai fungsi terhadap variabel akan dijelaskan mengenai contoh penerapan TurunanBerikut merupakan beberapa penerapan dapat diterapkan untuk menghitung gradien dari garis singgung suatu dapat digunakan untuk menentukan interval dimana suatu fungsi naik atau dapat diterapkan untuk menentukan nilai stasioner suatu dapat diterapkan dalam menyelesaikan permasalahan yang berkaitan dengan persamaaan dapat digunakan untuk menyelesaikan permasalahan ini akan dijelaskan mengena rumus merupakan beberapa rumus dasar untuk menentukan = c, dengan c merupakan konstantaTurunan dari fungsi tersebut adalah f’x = = xTurunan dari fungsi tersebut adalah f’x = = axnTurunan dari fungsi tersebut adalah f’x = anxn – 1Penjumlahan fungsi hx = fx + gxTurunan fungsi tersebut yaitu h’x = f’x + g’x.Pengurangan fungsi hx = fx – gxTurunan fungsi tersebut adalah h’x = f’x – g’xPerkalian konstanta dengan suatu fungsi kfx.Turunan fungsi tersebut adalah k . f’x.Berikut ini akan dijelaskan mengenai turunan FungsiMisalkan terdapat suatu fungsi fx = axn. Turunan dari fungsi tersebut yaitu f’x = anxn – yaitufx = 3x3turunan dari fungsi tersebut yaituf’x = 3 3 x3 – 1 = 9 lainnya misalnya gx = dari fungsi tersebut adalah g’y = -5 -3 y-3 – 1 = akan dijelaskan turunan fungsi Fungsi AljabarPembahasan turunan fungsi aljabar pada bagian ini meliputi turunan dalam bentuk perkalian dan turunan dalam pembagian fungsi aljabar. Turunan fungsi aljabar dalam bentuk perkalian yaitu sebagai terdapat perkalian fungsi hx = ux . vx.Turunan dari fungsi tersebut yaitu h’x = u’x . vx + ux . v’x.Keteranganhx fungsi dalam bentuk perkalian turunan fungsi bentuk perkalianux, vx fungsi dengan variabel xu’x, v’x turunan fungsi dengan variabel xTurunan fungsi aljabar dalam bentuk pembagian yaituMisalkan terdapat perkalian fungsi hx = ux/vx. Turunan dari fungsi tersebut adalahh’x = u’x . vx – ux . v’x/v2x.Keteranganhx fungsi dalam bentuk perkalian turunan fungsi bentuk perkalianux, vx fungsi dengan variabel xu’x, v’x turunan fungsi dengan variabel xBaca juga ini akan dijelaskan mengenai turunan AkarMisalkan terdapat suatu fungsi akar sebagai berikutUntuk menentukan turunan dari fungsi tersebut, terlebih dahulu kita ubah ke dalam bentuk fungsi perpangkatan. Bentuk fungsi perpangkatannya yaitu fx = xa/ dari fungsi tersebut yaitu f’x = a/b . xa/b – jika fungsi berbentuk seperti ini?Untuk menentukan turunan fungsi di atas, terlebih dahulu diubah ke bentuk = gxz/bTurunan dari fungsi tersebut yaitu f’x = a/b . gxa/b – 1 . g’x.Berikut ini akan dijelaskan mengenai turunan ParsialApa itu turunan parsial? Turunan parsial merupakan suatu turunan dari fungsi peubah banyak terhadap suatu peubah, sedangkan peubah yang lain terdapat suatu fungsi fx, y = 2xy, turunan parsial dari fungsi tersebut terhadap variabel x yaitu fx’x, y = lainnya yaitu, terdapat fungsi gx, y = -3xy2Turunan parsial terhadap variable y yaitu fy’x, y = akan dijelaskan mengenai turunan ImplisitTurunan implisit ditentukan berdasarkan variabel yang terdapat dalam fungsi dengan variabel x, turunannya x d/ fungsi dengan variabel y, turunannya y d/dy. dy/ fungsi dengan variabel x dan y, turunannya xy d/dx + xy d/dy . dy/ juga lebih memaham mengenai turunan, coba kerjakan soal berikut kemudian periksalah jawaban kalian dengan menggunakan pembahasan pada bagian di bawah Soal Turunan1. Tentukan turunan dari fungsi = 8gx = 3x + 5hx = 6x3kx = 3x5/3mx = 3x2 + 34Pembahasanf’x = 0g’x = 3h’x = 6 3 x3 – 1 = 18x2k’x = 3 5/3 x5/3 – 1 = 5x2/3m’x = 4 . 3x2 + 34 – 1 . 6x = 24x . 3x2 + 332. Tentukan turunan dari fungsi = 3x + 2 . 2x2 – 1PembahasanMisal ux = 3x + 2 dan vx = 2x2 – 1f’x = u’x . vx + ux . v’xf’x = 3 . 2x2 – 1 + 3x + 2 . 4xf’x = 6x2 – 3 + 12x2 + 8x = 18x2 + 8x – 33. Diberikan sebuah fungsi ordo 2 seperti di bawah iniTentukan nilai f0 + 3f’1PembahasanUntuk mengerjakan soal ini, kita dapat memasukkan nilai 0 ke dalam fungsi Anda, mendapatkan nilai f0. Kita dapat mengerjakan turunan fungsi hasil bagi menggunakan salah sifat menggunakan rumus tersebut, kita dapat menggunakan pemisalan dan turunannya seperti di bawah = x2 + 3 ; U’ = 2xV = 2x + 1 ; V’ = 2Kemudian, kita bisa memasukkan pemisalan tersebut ke dalam rumus turunan yang sebelumnya serta kita dapat secara langsung memasukkan f’x1.Maka, hasil f0 + 3f’1 = 3 + 30 = 34. Tentukan hasil turunan fx = x2 + 2x + 33x + 2PembahasanSama seperti soal sebelumnya, Untuk mengerjakan soal turunan dalam bentuk perkalian, kita dapat menggunakan rumus sifat turunan serta menggunakan pemisalan dalam fungsi tersebut seperti di bawah = u’v + uv’U = x2 + 2x + 3 ; U’ = 2x + 3V = 3x + 2 ; V’ = 3F’x = u’v + uv’F’x = 2x+33x + 2 + x2 + 2x + 33F’x = 6x2 + 13x + 6 + 3x2 + 6x + 9F’x = 9x2 + 19x + 15Sehingga bentuk akhir F’x adalah 9x2 + 19x + 155. Jika terdapat fx = 2x-12x+2. Berapakah nilai f’x2PembahasanUntuk mengerjakan soal ini, kita bisa menggunakan sifat turunan fungsi f’x = u’v + v’u untuk mendapatkan hasil akhir. Sehingga kita dapat melakukan pemisalan = u’v + uv’U= 2x-12 = 4x2 – 4x + 1 ; U’ = 8x – 4V = x + 2 ; V’ = 1F’x = u’v + uv’F’x = 8x – 4x + 2 + 4x2 – 4x + 11 ; kita dapat memasukkan nilai 2 seperti di soalF’2 = 82 – 42 + 2 + 422 – 42 + 11F’2 = 16-44 + 16-8+11F’2 = 96 + 9 = 105Sehingga nilai akhir F’2 adalah 1056. Tentukan sebuah garis singgung pada kurva y= -2x2 + 6x + 7 yang tegak lurus dengan garis x – 2y +13 = 0PembahasanDisebutkan di dalam soal bahwa terdapat 2 garis yang saling tegak lurus, sehingga kita dapat mengasumsikan bahwa kedua garis memiliki kemiringan tertentu. Kita dapat menentukan nilai m1 dan m2 dari kedua merupakan slope dari garis y= -2x2 + 6x + 7. Untuk mencari nilai m1, dapat dilakukan dengan cara menurunkan fungsi y= -2x2 + 6x + = y’x = -4x + 6m2 merupakan slope dari x – 2y +13. Untuk mencari nilai m2, kita harus mengubah fungsi tersebut menjadi fungsi – 2y +13 = 0x + 13 = 2yy = 0,5x + = y’x = 0,5Dikarenakan kedua garis saling tegak lurus, maka nilai m1 x m2 = x m2 = -1-4x + 60,5 = -1-2x + 3 = -1-2x = -4X = 2Kita masukkan ke dalam persamaan m1 sehingga di dapatkan nilai m1 = -2. Setelah menemukan nilai x, kita masukkan nilai tersebut ke fungsi y sehingga di dapatkan nilai y = membuat sebuah garis singgung, rumus yang digunakan adalah y-y1 = m1x – x1.y – 11 = -2 x – 2Y – 11 = -2x +4Y = -2x + 15Garis singgung adalah y+2x-15 = 07. Terdapat sebuah box tanpa tutup dengan alas berbentuk persegi memiliki luas sebesar 512 cm2. Berapakah panjang rusuk agar volumenya memiliki nilai maksimumPembahasanPada soal tersebut, dijelaskan bahwa box tidak memiliki tutup. Sehingga, box tersebut terdiri dari 4 sisi dan 1 alas. Anggap sisi alas adalah s dan tinggi sisi adalah t. Kita dapat menuliskan persamaan box seperti di bawah = luas alas + 4 sisi box512 = + = s2 + 4st512 – s2 = 4stSetelah mendapatkan t, kita bisa mencari volume dari box tersebutV = s3 = s2 . tUntuk mendapatkan volume maksimum, kita dapat menurunkan persamaan volume di atasV’s = 0S2 = 170,67 cm2S = 13,07 cmSehingga, panjang s yang dibutuhkan agar volumenya maksimum adalah 13,07 merupakan suatu perhitungan terhadap perubahan nilai fungsi karena perubahan nilai input variabel.Beberapa macam turunan yaitu turunan fungsi aljabar, turunan akar, turunan parsial, turunan implisit, dan yang pembahasan mengenai turunan. Semoga dapat membantu kalian dalam belajar mengenai turunan. Terima kasih.
CONTOH SOAL, Matematika, UAS, UN SOAL FUNGSI TURUNAN MATEMATIKA DAN JAWABAN. Soal-soal turunan ini diambil dari soal ujian sekolah, Ebtanas, maupun Soal UN . Soal Fungsi Turunan ini sudah dilengkapi dengan pembahasan lengkapnya. Semoga soal ini dapat membantu adik-adik dalam mengerjakan dan memahami bentuk soal Turunan matematika. Selamat belajar . 1. Fungsi f ditentukan oleh dan f adalah turunan pertama dari f. Maka nilai dari f 1 = …. a. b. c. d. e. Pembahasan 2. Turunan pertama fungsi adalah f x = …. a. b. c. d. e. Pembahasan 3. Diketahui dan f x adalah turunan pertama dari fx. Maka nilai dari f -1 = …. a. 4 b. 12 c. 16 d. 84 e. 112 Pembahasan misalkan u = 3x + 4 maka u’ = 3 dan n = 4 gunakan aturan rantai, maka 4. Turunan pertama fungsi adalah f x = …. a. b. c. d. e. Pembahasan , nyatakan dalam bentuk pangkat 5. Turunan pertama dari adalah f x = … a. b. c. d. e. Pembahasan nyatakan dalam bentuk pangkat maka Materi Soal SMM USU 2020 Materi Soal UPN Veteran Yogyakarta 2020 Soal SMMPTN Barat 2020 dan Pembahasan Download Soal UTBK SBMPTN Ads UN Label CONTOH SOAL, Matematika, UAS, UN
soal un turunan dan pembahasan